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Abstract
The exciton ground state and excited state energies are calculated for a model
system of an infinitely long cylindrical wire. The effective Coulomb potential
between the electron and the hole is studied as function of the wire radius.
Within the adiabatic approximation, we obtain ‘exact’ numerical results for the
effective exciton potential and the lowest exciton energy levels which are fitted
to simple analytical expressions. Furthermore, we investigated the influence of a
magnetic field parallel to the nanowire on the effective potential and the exciton
energy.

1. Introduction

Nowadays, semiconductor nanowires with a small diameter can be realized in a fast and
cost-effective manner. One of the possible growth techniques, the VLS (vapour–liquid–solid)
technique, is a bottom-up technique which appears to be very promising [1]. In this method, a
liquid metal cluster acts as a catalyst where reactants dissolve, which leads to the direct growth
from the supersaturated alloy droplet. This growth method results in a freestanding nanowire
that is not surrounded by any other material, in contrast to the embedded wires.

From a theoretical point of view such semiconductor nanowire structures are very
interesting for understanding the role of dimensionality on physical properties. Furthermore,
they provide a great potential for several applications, such as transistors [2], diodes [3],
memory elements [4], lasers [5, 6], and chemical and biological sensors [7].

These nanowires have a large aspect ratio and can be considered one-dimensional
structures. They have a length and a diameter in the micrometre and nanometre range,
respectively. Electrons and holes are strongly confined in two directions and there is no
confinement in the direction of the axis of the wire. Here we will investigate the exciton
binding energy and its lowest excited states. Excitons form the basis of optical properties
reflecting the intrinsic nature of low-dimensional systems. As a first step we investigate the
potential and energy of the electron–hole pair. Because our aim is to present ‘exact’ numerical
results we will limit ourselves for the moment to the model system in which the difference
in dielectric constant of the nanowire material and its surrounding is neglected. Only in this
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special case are we able to present analytical results. Although for ‘stand alone’ nanowires the
dielectric mismatch in the wire (difference in dielectric constant of the material of the wire and
the environment) is important, the study of it will be postponed for further investigations.

In previous work [8], a similar model system was studied, but only the ground exciton state
was obtained and no systematic study was presented of the dependence on wire radius, mass
of the carriers, magnetic field and of the excited states. Also impurity states—both with and
without a magnetic field parallel to the wire axis—were considered in previous papers [9, 10],
with the charged impurity fixed to the cylinder axis and with averaging performed only over
the electronic motion. The effective potential for the ground state configuration was obtained
previously [11]3—the calculations involved the numerical evaluation of multidimensional
integrals—and agrees with our results. One of the aims of the present paper is to give explicit
analytical expressions for the effective Coulomb potential that are fitted to these numerical
results and are more tractable in later calculations of for example the energy levels of exciton
complexes. Furthermore, the binding energy of the exciton is calculated numerically for
arbitrary wire thicknesses, while the results of [8] were limited to thin wires. Also the energy
of excited exciton states are given and analytical expressions are fitted to the numerical results.
Finally, the addition of a magnetic field is another extension which has not been studied in detail
before. The effective potential was calculated before for embedded rectangular wires [12]
for magnetic fields perpendicular and parallel to the wire axis. The focus of [12] is not on
the effective potential, but on the calculation of the exciton energy and a comparison with
experiment. In [13] analytical expressions for parabolic confined wires were obtained, which
we found could be accurately fitted to our results in the high magnetic field limit. Note that
our calculations are very general, since they apply to arbitrary materials provided they can be
described within the framework of the effective mass theory.

This paper is organized as follows. In section 2 we consider the single-particle states of
the electron and hole. In section 3 we calculate the effective potential of the exciton, using
the adiabatic approximation. The numerical results for the effective potential as a function
of the interparticle distance are fitted to simple analytical expressions. The exciton energy is
calculated numerically and semi-analytically in section 4. The influence of a magnetic field
will be investigated in section 5 and our conclusions are presented in section 6.

2. Single-particle states

For completeness we first consider the eigenfunctions and corresponding eigenvalues of a single
particle in a circular4 potential well with radius R. Adopting the effective mass approximation
we write the Schrödinger equation as follows:

− h̄2

2m
�∇2ψ(�r)+ V (�r)ψ(�r) = Eψ(�r ), (1)

where we approximate the confinement potential of the wire by a hard wall potential

V (�r) =
{

0 if ρ � R

∞ if ρ > R,
(2)

where ρ = √
x2 + y2. For the freestanding wire the potential height is given by the work

function which is typically a few eV and therefore very large compared to typical confinement

3 Note that this paper contains several mistakes in the formulae; the figures, however, are correct, which indicates that
the mistakes are typing errors. Nevertheless, one should be careful and not just copy the formulae.
4 For the sake of simplicity, we took circular symmetry. One can perform similar calculations for square wires and
find that the final results, i.e. the effective exciton potential and exciton energy, match the result of a circular wire with
radius comparable to half of the side of a square. This was investigated by Zhang and Mascarenhas [14].



Exciton states in cylindrical nanowires 3953

energies. The wire is oriented along the z-axis. Since the motion in the z-direction (free particle
in that direction) is decoupled from the motion in the (x, y)-plane, and, because of circular
symmetry, we have ψ(ρ, θ, z) = F(ρ)e−ilθ eikz z , where θ is the polar angle. The Schrödinger
equation is then reduced to the one-dimensional (1D) equation

ρ2 F(ρ)′′ + ρF(ρ)′ + ((k2 − k2
z )ρ

2 − l2)F(ρ) = 0, (3)

with k2 = 2m E/h̄2. The solutions to this equation are the well known Bessel functions,
and taking hard wall boundary conditions into account, one gets for the single-particle
wavefunctions

ψn,l,kz (ρ, θ, z) = Cn,le
−ilθ Jl

(
βn,l

R
ρ

)
eikz z, (4)

and the corresponding eigenenergies

En,l,kz = h̄2β2
n,l

2m R2
+ h̄2k2

z

2m
, (5)

where Cn,l is the normalization constant and βn,l is the nth-order zero of the Bessel function
Jl(x). The zeros of the Bessel functions are known and can be found in the literature [15]:
β0,0 = 2.4048, β0,1 = 3.8317, β0,2 = 5.1356, β1,0 = 5.5201, β1,2 = 8.4172, β2,2 =
11.6198, . . .. Notice that the first excited state is |0, 1, kz〉 and the second one |0, 2, kz〉.

3. Effective exciton potential

3.1. Adiabatic approximation

The appropriate Hamiltonian for an exciton in the effective mass approximation is given by

H = − h̄2

2me

�∇2
e + Ve(xe, ye)− h̄2

2mh

�∇2
h + Vh(xh, yh)+ VC (�re − �rh) , (6)

where me (mh) is the effective mass of the electron (hole), Ve (Vh) is the confinement potential
of the electron (hole) and

VC ( �re − �rh) = − 1

4πε

e2√
(xe − xh)2 + (ye − yh)2 + (ze − zh)2

, (7)

is the Coulomb interaction potential between the electron and the hole. In this case, it is
convenient to separate the motion of the two particles into that of the centre of mass of the
system and the relative motion, thereby introducing the quantities Z = (meze + mhzh)/(me +
mh), z = ze − zh, M = me + mh, µ = (memh)/(me + mh). Now the Hamiltonian can be
rewritten as

H = − h̄2

2me

�∇2
xe ,ye

+ Ve(xe, ye)− h̄2

2mh

�∇2
xh,yh

+ Vh(xh, yh)− h̄2

2M

∂2

∂2 Z
− h̄2

2µ

∂2

∂2z

− 1

4πε

e2√
(xe − xh)2 + (ye − yh)2 + z2

. (8)

In the case of strong lateral confinement, the exciton motion along the wire is decoupled form
the lateral motion of the particles and we may decouple the wavefunction as follows:

�(xe, ye, xh, yh, z, Z) = eiK Zφ(z)ψ(xe, ye)ψ(xh, yh). (9)

Because the Coulomb energy in the considered case is much weaker than the single-particle
confinement energy, we adopt the adiabatic approximation, thereby taking ψ(x, y) as the
above obtained single-particle states. Multiplying equation (8) with ψ∗(xe, ye)ψ

∗(xh, yh) from
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Figure 1. Effective exciton interaction potential as a function of the electron–hole separation z for
three different states of the electron and hole (full curve: ne = le = 0 and nh = lh = 0 for the hole;
dashed curve: le = lh = 1 and ne = nh = 0; dotted curve: le = lh = 2 and ne = nh = 0). The
regular Coulomb potential, 1/z, is also plotted (dashed–dotted) for comparison. Inset: the effective
potential for different sets of quantum numbers for the electron and hole.

the left and with ψ(xe, ye)ψ(xh, yh) from the right, integrating over the lateral coordinates
we reduce the original 6D Schrödinger equation for the exciton problem to a 1D effective
Schrödinger equation for the relative exciton coordinate(

Ee + Eh + h̄2 K 2

2M
− h̄2

2µ
∇2

z + Veff(z)

)
φ(z) = Etotφ(z), (10)

where Ee (Eh) are the single-electron (hole) energies, and the effective exciton potential, Veff,
is given by

V n,l
eff (z) = − e2

4πε

∫
dxedxhdyedyh

∣∣ψn,l,kz (xe, ye)
∣∣2 ∣∣ψn,l,kz (xh, yh)

∣∣2√
(xe − xh)2 + (ye − yh)2 + z2

. (11)

Introducing dimensionless units (i.e. length expressed in units of R) and α = a∗
B/2R with

a∗
B = 4πεh̄2/µe2 the effective Bohr radius, we finally get(

−α∇2
z + Ṽeff(z)

)
φ(z) = ẼCφ(z), (12)

where z is given in units of R, Ṽ = V/E0, ẼC = EC/E0, E0 = e2/4πεR and EC =
Etot − Ee − Eh − h̄2 K 2/2M . To study the bound energy states of the exciton, we first have to
determine the exciton potential. Examining equation (11), it is clear that evaluating this integral
numerically is not straightforward because of the 1/r singularity for r → 0.

The method we used to get rid of this problem is explained in the appendix. The result
of the calculations can be found in figure 1, where we show the effective Coulomb potential
when the electron and the hole are in the ground state, i.e. ψ → ψ0,0, (V 0,0) and in both the
first and second excited state, i.e. ψ → ψ0,1 (V 0,1) and ψ → ψ0,2 (V 0,2) respectively (the
single-particle densities are shown in figure 2). Notice how all effective potentials in figure 1
show the −1/z behaviour for z → ∞ and that the effective potential is finite for z = 0.
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Figure 2. Density for the electron and hole in the nanowire for the lowest three single-particle
states.

3.2. Approximate analytical expressions

Since the calculation of the effective Coulomb potential requires a considerable amount of
computational time, it is highly desirable to have an analytical expression for it. Let us first
consider the small-z behaviour of the effective potential:

Ṽeff(z) = a + bz + cz2, (13)

where Ṽeff(z) = Veff(z)/E0 and z is in units of R. The coefficients are given by

a = Ṽeff(z = 0) = −2.5961, (14)

b = dṼeff(z)

dz

∣∣∣∣
z=0

= 4.1967, (15)

c = 1

2

d2Ṽeff(z)

dz2

∣∣∣∣
z=0

= −5.6140, (16)

for the single-particle ground state. In a similar way, we get a = −2.1126 (a = −1.9774),
b = 3.1031 (b = 3.0608) and c = −4.5503 (c = −5.4277) for the first (second) excited
state. This polynomial expression, equation (13), is within 1% of the numerical result for
z/R < 0.14.

Next we will look for an analytical expression that fits the whole range of z-values.
Therefore, we have approximated the full effective potential by Padé approximants. The first
Padé approximation is given by

Ṽeff(z) = P0(z)

P1(z)
= v

w + |z| , (17)

where Pi (z) is a polynomial of i th order. This formula corresponds to equation (2.8a) of [8]. If
we take into account that Ṽeff(0) = v/w and remember that for z → ∞ the effective potential
behaves as a normal Coulomb potential (−1/z), we can conclude that v = −1 and calculate
that w = 0.3852 (ground state), w = 0.4734 (first excited state) and w = 0.5057 (second
excited state).

This Padé approximation and the result of the calculations are compared in figure 3(a) for
the ground state and in figure 3(b) for the first and second excited state.
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Figure 3. Plot of the numerical data and the two Padé approximations, P0(z)/P1(z) and
P1(z)/P2(z), for (a) the ground state and (b) the first and second (inset) excited state.

To improve this result we consider the next Padé approximation:

Ṽeff(z) = P1(z)

P2(z)
= γ |z| + δ

z2 + η |z| + β
. (18)

Again, there are certain conditions which impose restrictions on the values of the parameters.
These conditions are Ṽeff(z)

z→∞−−−−−→−1/z, which implies that γ = −1 and δ/β = Ṽeff(z =
0), which leaves us with two fitting parameters. After fitting the data to the expression in
equation (18), we find η = 1.1288 ± 0.0029, β = 0.4705 ± 0.0015, δ = −1.2215 ± 0.0039
for the electron and hole in the ground state, η = 1.728 ± 0.017, β = 0.899 ± 0.011, δ =
1.900 ± 0.023 for the electron and hole in the first excited state and η = 2.749 ± 0.061, β =
1.559 ± 0.039, δ = −1.9774β = 3.083 ± 0.077 for the electron and hole in the second
excited state. The fitted second Padé approximation is also shown in figure 3, and we obtain an
excellent fit (i.e. within 1.5%) for all states.

If the confinement potential for the electron and hole is a parabolic potential, i.e. V (x, y) =
mω2

0(x
2+ y2), it is possible to perform all integrals in equation (11) analytically. The analytical

result for the effective potential was obtained in [13] and reads

Ṽeff(z) = −
(π

2

)1/2 1

l0/R

[
1 − erf

( |z|√
2l0/R

)]
e|z|2/2(l0/R)2 (19)
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Figure 4. Comparison between the numerical effective electron–hole potential and the approximate
one using the wavefunction of a harmonic oscillator for three different sets of quantum numbers of
electron and hole.

with the oscillator length l0 = (h̄/mω0)
1/2. It is remarkable that this potential approaches our

effective exciton potential very closely if we define l0 to be

l0/R = − 1

Ṽeff(0)

(π
2

)1/2
(20)

i.e. the expression for the oscillator length extracted from equation (19) by putting z = 0. It is
possible now to calculate l0/R numerically for the different effective potentials: l0/R = 0.4828
(ground state), l0/R = 0.5933 (first excited state) and l0/R = 0.6338 (second excited state).
Using these results in equation (19), we get an expression for the effective exciton potential as a
function of the interparticle distance. The approximation and the calculated data can be seen in
figure 4, and they show a good agreement for the ground state and first excited state (fit within
0.7% of the data), while for the second excited state the approximated result is still reasonable
(fits within 3.2% of the data).

4. Exciton energy

4.1. Numerical calculations

When a single exciton is created by excitation, its energy is generally given by E = Eg + Ee +
Eh + EC, where Eg denotes the energy band gap, Ee(h) is the single-electron (hole) energy and
EC is the (negative) energy of the Coulomb interaction between the electron and hole. For a
given material, we have to calculate now EC; all other contributions to the exciton energy are
known. Therefore, the 1D Schrödinger equation (equation (12)) was solved using the finite
difference technique. Figure 5 shows the energy of the Coulomb interaction of the three lowest
exciton energy levels as a function of the dimensionless parameter α = a∗

B/2R for two cases
of the effective potential.

The binding energy can also be fitted to an analytical expression now. Values of α < 0.1
are not realistic, since this would correspond to a large radius and a strong confinement
approach would no longer be valid. Therefore, the following fit is suggested for α-values
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Figure 5. Binding energy as a function of the parameter α = a∗
B/2R. The solid curves are

calculated by using the effective potential V 0,0 (electron and hole in the ground state). The symbols
represent the fit which is given by equation (21). Inset: the same, but now for the effective potential
V 0,1 (electron and hole in the first excited state).

exceeding 0.1:

ẼC = ξ

1 + bατ
. (21)

For the ground state configuration of the electron and hole, we find that ξ = −2.145 ± 0.020,
b = 1.093 ± 0.022, τ = 0.5385 ± 0.0040, and for the first (second) excited states of the
exciton binding energy we find ξ = −1.287 ± 0.031, b = 5.42 ± 0.16 and τ = 0.945 ± 0.013
(ξ = −1.211 ± 0.016, b = 10.23 ± 0.14 and τ = 0.8830 ± 0.0034) (see figure 5 for the
fits). Similarly, for the configuration where the electron and hole are in the first excited state,
we find that ξ = −1.714 ± 0.015, b = 0.967 ± 0.020 and τ = 0.5449 ± 0.0042 (ground
state), ξ = −1.0525 ± 0.028, b = 4.56 ± 0.16, τ = 0.940 ± 0.016 (first excited state) and
ξ = −0.965 ± 0.016, b = 8.47 ± 0.15, τ = 0.8944 ± 0.0051 (second excited state).

From equation (12) it is clear that, for small α-values, there is a relatively smaller
contribution of the kinetic energy term ∇2

zψ . As α increases, the energy of the particle will
also increase, because of an increase in the contribution from the kinetic energy term. For large
values of α the energy levels become closely packed to the ẼC = 0 level. In fact, because of the
1/z behaviour of the exciton potential for large z, the integral

∫
V (z)1/2 dz = ∞ and according

to [16] there will be an infinite number of bound states.

4.2. Comparison with analytical results

In this section we present an analytical solution of the 1D Schrödinger equation (12). Similar
calculations were done earlier by Loudon [17], who solved the problem of the 1D hydrogen
atom (i.e. the ideal limit of the 1D electron–hole system: infinitesimal wire cross-section and
hard wall confinement) analytically. To avoid the divergence of the original potential at z = 0
Loudon used different models, e.g. hard wall conditions at z = 0, i.e. φ(z = 0) = 0. The
1D Schrödinger equation, equation (12), has in general to be solved numerically. We used the
finite difference technique. In the special case in which the effective potential is approximated
by the first Padé approximant, equation (17), it is possible to obtain an analytical expression for

the wavefunction. After introducing the new variable y = 2
√

−ẼC/α(z + w), we can rewrite
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Figure 6. Ground state (lower curves) and first excited state (upper curves) energy of the exciton
when using (1) the first Padé approximation for the electron–hole interaction potential and (2) the
numerical expression for the electron and hole in the ground state. The curve with symbols is the
asymptotic behaviour, i.e. equation (25).

equation (12) as the Whittaker equation:

∇2
yφ(y)+


−1

4
+ −v

2yα
√

−ẼC/α


 = 0. (22)

The wavefunctions are then given in terms of the Whittaker function

φ(y) = Aye−y/2U(1 − κ; 2; y), (23)

where A is a normalization constant and κ = −v/2α
√

−ẼC/α. The energy is then obtained
by solving the following equations:

dφ(y)

dy

∣∣∣∣
y=2w

√
−ẼC/α

= 0 (even states),

φ
(

y = 2w
√

−ẼC/α
)

= 0 (odd states). (24)

We now obtain the energy of the Coulomb interaction semi-analytically (by solving the
transcendent equation) and we compare it in figure 6 with the numerically calculated energy.
Notice that for large α both energies are close to each other. But for small α-values (which
corresponds to large R) there is a underestimation of the exciton energy up to 15%. This is not
surprising, since the first Padé approximation leads to a rather poor fit to the effective potential
(see figure 3(a)). Nevertheless analytical calculations are useful because they allow for an
estimation of the energy without having to solve the differential equation (12) numerically.
Furthermore it has to be noticed that, in the case of large α (which corresponds to small radii
R), it is now possible to find a simple analytical expression [8] for ẼC, i.e.

ẼC = −1/4αν2 (25)

where

ν = νm



νm = m + w

α
(odd states)

νm = m − 1

ln (w/mα)
(even states)

(26)
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for m = 1, 2, 3, . . .. These correspond to the bound states of the exciton. This asymptotic
result is shown in figure 6 by the square symbols and is clearly only valid for large α. Note that
in the limit of a Coulomb interaction potential the excited states are twofold degenerate. The
lowest bound state satisfies the special relation

ln

(
w

ν0α

)
+ 1

2ν0
= 0. (27)

This approximation is also shown in figure 6.

5. Magnetic field dependence

5.1. Single-particle properties

When a magnetic field, directed along the wire, is applied, the single-particle Hamiltonian for
an electron (q = − |e|) or hole (q = |e|) can be written as

H = 1

2m

(
−ih̄ �∇ − q �A

)2 + V (�r), (28)

where V (�r) is again the confinement potential of the wire. Due to the symmetry of the problem
we may benefit from the symmetric gauge �A = 1

2 Bρ�eθ for the vector potential. For the same
reason, the wavefunction ψ(ρ, θ) is separable, and it can be written as ψ(ρ, θ) = R(ρ)e−ilθ ,
where the z-dependence has been omitted for the sake of simplicity. The Schrödinger equation
now reads(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− l2

ρ2

)
R +

(
−mωc

h̄
sgn (q)l −

(
mωc

2h̄

)2

ρ2 + 2m E

h̄2

)
R = 0, (29)

where ωc = |e| B/m is the cyclotron frequency. Introducing the following parameters,
k∗2 = −sgn (q)lmωc/h̄ + 2m E/h̄2 and 1/ l2

B = mωc/2h̄, and by putting R(ρ) =
ρ|l| exp(−ρ2/2l2

B) f (ρ), one gets

t f ′′ + ((|l| + 1)− t) f ′ −
(

1

2
(|l| + 1)− l2

Bk∗2

4

)
f = 0, (30)

where the new variable t is given by t = ρ2/ l2
B . The solution is the confluent hypergeometric

function [18].

ψn,l(ρ, θ) = Cn,l e
−ilθ ρ|l|e

− ρ2

2l2B 1 F1

(
−an,l; |l| + 1; ρ

2

l2
B

)
, (31)

where Cn,l is a normalization constant and

−an,l = 1

2
(|l| + 1)− l2

Bk∗2

4
, (32)

is a constant which is obtained by using the hard wall boundary conditions, i.e. ψn,l(R, θ) = 0.
The single-particle energy then becomes

En,l = h̄ωc

(
anl + 1 + |l| + sgn(q)l

2

)
. (33)
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Figure 7. Effective exciton potential for different values of the magnetic field (full lines) in which
the electron and hole are in the ground state. The approximation (open symbols) of equation (19)
can be used again to fit the calculated effective potential. For comparison, the effective potential
for the system without magnetic field was also drawn (lB/R = ∞, dotted line). Note that, for this
figure, the electron and hole were in the ground state.

5.2. Effective exciton potential

The total Hamiltonian is now given by

Htot = − 1

2me

(
�pxe,ye + |e| �A

)2 + Ve(xe, ye)− 1

2mh

(
�pxh,yh − |e| �A

)2 + Vh(xh, yh)

− h̄2

2me
∇2

ze
− h̄2

2mh
∇2

zh
− 1

4πε

e2√
(xe − xh)2 + (ye − yh)2 + z2

. (34)

Again, we can reduce this equation to a 1D effective Schrödinger equation similarly as for
the B = 0 case (i) by separating the motion of the two particles into the centre of mass
relative coordinates, (ii) by using the adiabatic approximation for the exciton wavefunction,
and (iii) by introducing the same dimensionless units as in section 3.1. This leads us to the
equivalent of equation (12), where the single-particle energies are now given by equation (33)
and the averaging of the effective potential has to be performed with the Kummer functions
(equation (31)) (instead of Bessel functions). Note that the confluent hypergeometric function
1 F1 is equivalent to the Kummer function M :

1 F1(a; b; z) = M(a, b, z). (35)

Figure 7 shows the effective potential for different values of the magnetic field (which
corresponds to different values of the magnetic length lB = √

2h̄/mωc). These potentials
can be approximated again by the expression in equation (19) (see the fit in figure 7). Therefore
it is more interesting to determine the relation between lB and Ṽeff(z = 0), since the value
of Ṽ (z = 0) will enable us to calculate l0/R (equation (20)) and therefore to reconstruct the
effective potential for the whole range of z-values for an arbitrary magnetic field. Figure 8
shows this curve for both the electron and hole in the ground state and in the first excited state.

This figure can be understood as follows. Large values of lB correspond to the absence
of a magnetic field and therefore the curve converges to the previously calculated value of
Ṽeff,lB →∞(z = 0) for B = 0. For small values of lB , equation (19) matches the calculated curve,
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Figure 8. Effective exciton potential at z = 0 as function of the magnetic length lB (the magnetic
field). The fit is to equations (37) and (39).

because for high magnetic fields, the confinement becomes effectively parabolic. Replacing the
oscillator length l0 by lB , the result for large magnetic fields is recovered:

Ṽ 0,0
eff,lB →0(z = 0) = −

√
π

2

1

lB/R
. (36)

Putting together these results into a single formula, we obtain a fit for the effective potential as
a function of the magnetic field:

Ṽ 0,0
eff (z = 0) = Ṽ 0,0

eff,lB →∞(z = 0)−
√
π

2

1

l̃/R
e−plB , (37)

where 1/l̃2 = 1/ l2
0 + 1/ l2

B . Two parameters have been determined by fitting the data, and
they are l0/R = 0.0624 ± 0.0021 and pR = 8.570 ± 0.090 for the electron and the hole in
the ground state configuration. Notice that basically we used the expression for the parabolic
confinement equation (19), and by rescaling l0 to l̃, we include the effect of the magnetic field.

By making a similar calculation to the one in [13], but for the electron and hole in the first
excited state, we find that

Ṽ 0,1
eff,lB →0(z = 0) = −11

16

√
π

2

1

lB/R
. (38)

Therefore we fitted the data for |ne, le〉 = |nh, lh〉 = |n, l〉 = |0, 1〉 to a slightly different
function,

Ṽ 0,1
eff (z = 0) = Ṽ 0,1

eff,lB →∞(z = 0)− 11

16

√
π

2

1

l̃/R
e−plB , (39)

where l0/R = 0.0462 ± 0.0026 and pR = 10.73 ± 0.17. The numerical results together with
the results of the fit are shown in figure 8, and they agree very well.

5.3. Exciton energy

Previously, we calculated the exciton energy as a function of the dimensionless parameter
α = a∗

B/2R, which is determined by the wire radius and the material parameters. In this



Exciton states in cylindrical nanowires 3963

Figure 9. Ground state exciton binding energy for the electron and hole in the ground state as a
function of the magnetic length lB = √

2h̄/eB for different values of α. Inset: the same but now
for the ground state, first and second excited state with α = 1.

case, there is another variable which can be changed and will have an effect on the energy: the
magnetic length lB . Considering the previous results of the system without magnetic field and
knowing that the shape of the potential does not fundamentally change by applying a magnetic
field (the effective potential well only gets deeper), we also know that the energy as a function of
α will not give a fundamentally different result from the previous one. Therefore we calculated
the binding energy as a function of the magnetic field (or the magnetic length lB ) for a few
fixed values of α (α = 10, α = 1 and α = 0.1) and the result of these calculations can
be seen in figure 9. The main figure shows only the ground state binding energy, while the
inset shows also the energy of the first and second excited state. The inset shows that the
magnetic field influences the ground state more than the first and second excited states, which
are almost constant. For high magnetic fields, which corresponds to lB/R → 0, we find that the
effective potential of equation (19) becomes a 1/z-potential [15]. This means that we can use
equations (25)–(27) again to determine the asymptotic behaviour of ẼC as function of lB . We
find that the ground state energy ẼC → ∞ for lB → 0 for all values of α, whereas for α = 1
(inset of figure 9) the first and second excited state become, in the limit B → ∞, degenerate
with energy −1/4.

6. Conclusion

In summary, we have calculated the effective interaction potential and the binding energy for
an exciton in a nanowire. The effective interaction potential was calculated for different states
of the electron and hole and we were able to present ‘exact’ numerical results. In order to
reduce the amount of computational time for future calculations, these results were used to
propose various analytical approximate expressions. We fitted the results to three different
functions. A first Padé approximation gives the correct qualitative behaviour, but the fit was not
optimal. Nevertheless this expression was useful to perform further analytical calculations to
estimate the binding energy of the exciton, especially for small values of the wire radius R. A
second Padé approximation as well as the result from the parabolic confinement resulted in very
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good fits. Furthermore the exciton binding energy was calculated both semi-analytically and
numerically, and analytical approximations were given. We also investigated the influence of a
magnetic field and determined an analytical expression for the effective potential for arbitrary
magnetic field values. Finally we calculated the binding energy as a function of the magnetic
field, where we found that the ground state binding energy is most affected by a variation of the
magnetic field.
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Appendix. Numerical calculation of the effective potential

To obtain the effective exciton potential of equation (11), we have to evaluate four-fold
integrals. They can be rewritten in polar coordinates as follows, using the same dimensionless
units as before:

Veff(z) = −R4
∫
ρeρh dρe dρh dθe dθh

|ψnl(Rρe, θe)|2 |ψn′l′(Rρh, θh)|2√
ρ2

e + ρ2
h − 2ρeρh cos(θe − θh)+ z2

. (A.1)

Due to cylindrical symmetry, we can perform the integral over the angle θh analytically,
yielding∫ 2π

0
dθe

∫ 2π

0

dθh√
ρ2

e + ρ2
h − 2ρeρh cos(θe − θh)+ z2

= 2π
4√

(ρe + ρh)2 + z2
K

(
4ρeρh

(ρe + ρh)2 + z2

)
(A.2)

where K(m) is the elliptic integral of the first kind. Using a polynomial approximation [15] for
the elliptic integral,

K(m) =
4∑

i=0

ai m
i
1 +

4∑
i=0

bi m
i
1 ln

1

m1

≡ A(m1)+ B(m1) ln(1/m1), (A.3)

with m1 = 1 − m, we find that

Veff(z) = −2πR4
∫ 1

0
dρeρe |ψnl(Rρe, θe)|2

×
∫ 1

0
4

dρhρh |ψn′l′ (Rρh, θh)|2√
(ρe + ρh)2 + z2

[
A(m1)+ B(m1) ln

1

m1

]
︸ ︷︷ ︸

≡I1

.

In a next step, we calculate the integral I1 over rh using numerical techniques. To obtain good
convergence, we use the logarithmically weighted method and consider the following integral:

I (ρe, z) =
∫ 1

0
dρh F(ρh, ρe, z) ln

(
(ρe − ρh)

2 + z2

(ρe + ρh)2 + z2

)
. (A.4)
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We use the following transformation:

I (ρe, z) =
s−1∑
i=0

∫ h

0
dx F(x + hi, ρe, z) ln

(
(x − (ρe − hi))2 + z2

(x + (ρe + hi))2 + z2

)
, (A.5)

where h denotes the step size and s the total number of steps. If we replace F(x + hi) by
Fi + (Fi+1 + Fi )x/h, we can write (A.5) as

I (ρe, z) =
s−1∑
i=0

Fi Ai(ρe, z)+ (Fi+1 − Fi )Ci (ρe, z), (A.6)

and the remaining problem is the calculation of the coefficients Ai and Ci . These coefficients
are given by

Ai (ρe, z) =
∫ h

0
dx ln

(
(x − (ρe − hi))2 + z2

(x + (ρe + hi))2 + z2

)
,

Ci (ρe, z) = 1

h

∫ h

0
dxx ln

(
(x − (ρe − hi))2 + z2

(x + (ρe + hi))2 + z2

)
.

(A.7)

These integrals can be performed analytically, which leads to the following results:

Ai (ρe, z) = a(h − (ρe − hi))− a(h + (ρe + hi )), (A.8)

Ci (ρe, z) = h−1 [c(h − (ρe − hi))− c(h + (ρe + hi ))] − 2re, (A.9)

with

a(y) = Hi(y)+ Hi(h − y)+ 2z

[
arctan

(
y

z

)
+ arctan

(
h − y

z

)]
,

Hi(y) = y ln(y2 + z2),

c(y) = 1
2

(
y(2h − y)+ z2

)
Gi (y)+ 1

2

(
(h − y)2 − z2

)
Gi (h − y)2z(h − y)

×
[

arctan

(
y

z

)
+ arctan

(
h − y

z

)]
,

Gi (y) = ln(y2 + z2). (A.10)

Now we can write, using the logarithmically weighted method,

I1 =
∫

4dρhρh |ψn′l′(Rρh, θh)|2√
(ρe + ρh)2 + z2

(A(m1)+ B(m1) ln(m1))

=
s−1∑
i=0

∫ h

0
dx F(x + hi) (A(m1)+ B(m1) ln(m1))

=
s−1∑
i=1

(Fi hA(m1)+ Fi (Ai + Ci−1 − Ci )B(m1))

+ Fs
h

2
A(m1)+ FsCs−1B(m1), (A.11)

where

Fi ≡ F(hi) = 4hi
∣∣ψn′,l′ (Rhi, θh)

∣∣2√
(ρe + hi)2 + z2

. (A.12)
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The final step is then to calculate the integral over ρe. Similarly, we can also perform this last
integration over ρe. Using the above-mentioned result of equation (A.11), we obtain the final
expression for the effective potential in the z-direction:

Veff(z) = − 2π

N2
R4

[
h

s−1∑
j=1

h j |ψnl(Rh j, θe)|2
[[

S1(h j)h + T (h j)
h

2
A(m1)

]

− [
S2(h j)+ T (h j)Cs−1B(m1)

]] + h

2
hs |ψnl(Rsh, θe)|2

×
[[

S1(hs)h + T (hs)
h

2
A(m1)

]
− [

S2(hs)+ T (hs)Cs−1B(m1)
]]]

with

S1(x) =
s−1∑
i=1

4hi |ψn′l′ (Rhi, θh)|2√
(x + hi)2 + z2

A(m1), (A.13)

T (x) = 4sh |ψn′l′(Rsh, θh)|2√
(x + sh)2 + z2

, (A.14)

S2(x) =
s−1∑
i=1

4hi |ψn′l′ (Rhi, θh)|2√
(x + hi)2 + z2

(Ai + Ci−1 − Ci)B(m1). (A.15)
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